Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation.
نویسندگان
چکیده
A variety of environmental and metabolic cues trigger the transient activation of the alternative transcription factor SigB of Bacillus subtilis, which subsequently leads to the induction of more than 150 general stress genes. This general stress regulon provides nongrowing and nonsporulated cells with a multiple, nonspecific, and preemptive stress resistance. By a proteome approach we have detected the expression of the SigB regulon during continuous growth at low temperature (15 degrees C). Using a combination of Western blot analysis and SigB-dependent reporter gene fusions, we provide evidence for high-level and persistent induction of the sigB operon and the SigB regulon, respectively, in cells continuously exposed to low temperatures. In contrast to all SigB-activating stimuli described thus far, induction by low temperatures does not depend on the positive regulatory protein RsbV or its regulatory phosphatases RsbU and RsbP, indicating the presence of an entirely new pathway for the activation of SigB by chill stress in B. subtilis. The physiological importance of the induction of the general stress response for the adaptation of B. subtilis to low temperatures is emphasized by the observation that growth of a sigB mutant is drastically impaired at 15 degrees C. Inclusion of the compatible solute glycine betaine in the growth medium not only improved the growth of the wild-type strain but rescued the growth defect of the sigB mutant, indicating that the induction of the general stress regulon and the accumulation of glycine betaine are independent means by which B. subtilis cells cope with chill stress.
منابع مشابه
RsbV-independent induction of the SigB-dependent general stress regulon of Bacillus subtilis during growth at high temperature.
General stress proteins protect Bacillus subtilis cells against a variety of environmental insults. This adaptive response is particularly important for nongrowing cells, to which it confers a multiple, nonspecific, and preemptive stress resistance. Induction of the general stress response relies on the alternative transcription factor, SigB, whose activity is controlled by a partner switching ...
متن کاملAdaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal.
The soil bacterium Bacillus subtilis frequently encounters a reduction in temperature in its natural habitats. Here, a combined transcriptomic and proteomic approach has been used to analyse the adaptational responses of B. subtilis to low temperature. Propagation of B. subtilis in minimal medium at 15 degrees C triggered the induction of 279 genes and the repression of 301 genes in comparison ...
متن کاملIsolation and characterization of Bacillus subtilis sigB operon mutations that suppress the loss of the negative regulator RsbX.
sigmaB, a transcription factor that controls the Bacillus subtilis general stress response regulon, is activated by either a drop in intracellular ATP or exposure to environmental stress. RsbX, one of seven sigmaB regulators (Rsb proteins) whose genes are cotranscribed with sigmaB, is a negative regulator in the stress-dependent activation pathway. To better define the interactions that take pl...
متن کاملExposure of Bacillus subtilis to low pressure (5 kilopascals) induces several global regulons, including those involved in the SigB-mediated general stress response.
Studies of how microorganisms respond to pressure have been limited mostly to the extreme high pressures of the deep sea (i.e., the piezosphere). In contrast, despite the fact that the growth of most bacteria is inhibited at pressures below ∼2.5 kPa, little is known of microbial responses to low pressure (LP). To study the global LP response, we performed transcription microarrays on Bacillus s...
متن کاملExpression of the sigmaB-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis.
The alternative sigma factor sigmaB of Bacillus subtilis is required for the induction of approximately 100 genes after the imposition of a whole range of stresses and energy limitation. In this study, we investigated the impact of a null mutation in sigB on the stress and starvation survival of B. subtilis. sigB mutants which failed to induce the regulon following stress displayed an at least ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 185 15 شماره
صفحات -
تاریخ انتشار 2003